
Meeting of the

LF AI & Data Technical Advisory Council

(TAC)

January 27, 2022

Antitrust Policy

› Linux Foundation meetings involve participation by industry competitors, and it is the
intention of the Linux Foundation to conduct all of its activities in accordance with
applicable antitrust and competition laws. It is therefore extremely important that
attendees adhere to meeting agendas, and be aware of, and not participate in, any
activities that are prohibited under applicable US state, federal or foreign antitrust
and competition laws.

› Examples of types of actions that are prohibited at Linux Foundation meetings and in
connection with Linux Foundation activities are described in the Linux Foundation
Antitrust Policy available at http://www.linuxfoundation.org/antitrust-policy. If you
have questions about these matters, please contact your company counsel, or if you
are a member of the Linux Foundation, feel free to contact Andrew Updegrove of the
firm of Gesmer Undergone LLP, which provides legal counsel to the Linux
Foundation.

27JAN2022

Recording of Calls

Reminder:

TAC calls are recorded and available for viewing on the TAC Wiki

27JAN2022

https://wiki.lfai.foundation/pages/viewpage.action?pageId=7733341TechnicalAdvisoryCouncil(TAC)-MeetingRecordingsandMinutes

Reminder: LF AI & Data Useful Links

› Web site: lfaidata.foundation

› Wiki: wiki.lfaidata.foundation

› GitHub: github.com/lfaidata

› Landscape: https://landscape.lfaidata.foundation or

https://l.lfaidata.foundation

› Mail Lists: https://lists.lfaidata.foundation

› Slack: https://slack.lfaidata.foundation

› Youtube: https://www.youtube.com/channel/UCfasaeqXJBCAJMNO9HcHfbA

› LF AI Logos: https://github.com/lfaidata/artwork/tree/master/lfaidata

› LF AI Presentation Template: https://drive.google.com/file/d/1eiDNJvXCqSZHT4Zk_-

czASlz2GTBRZk2/view?usp=sharing

› Events Page on LF AI Website: https://lfaidata.foundation/events/

› Events Calendar on LF AI Wiki (subscribe available):

https://wiki.lfaidata.foundation/pages/viewpage.action?pageId=12091544

› Event Wiki Pages:

https://wiki.lfaidata.foundation/display/DL/LF+AI+Data+Foundation+Events

27JAN2022

https://lfaidata.foundation/
https://wiki.lfaidata.foundation/
https://github.com/lfaidata
https://landscape.lfaidata.foundation
https://l.lfaidata.foundation
https://lists.lfaidata.foundation/g/main/subgroups
https://slack.lfaidata.foundation
https://www.youtube.com/channel/UCfasaeqXJBCAJMNO9HcHfbA
https://github.com/lfaidata/artwork/tree/master/lfaidata
https://drive.google.com/file/d/1eiDNJvXCqSZHT4Zk_-czASlz2GTBRZk2/view?usp=sharing
https://lfaidata.foundation/events/
https://wiki.lfaidata.foundation/pages/viewpage.action?pageId=12091544
https://wiki.lfaidata.foundation/display/DL/LF+AI+Data+Foundation+Events

Agenda

› Roll Call (2 mins)

› Reminder about attending meetings and quorum (2 minutes)

› Reminder about Security Badge requirement (5 minutes)

› Artigraph Incubation Proposal (40 minutes)

› Approval of Minutes from previous meetings (2 mins)

› Reminder about Google Summer of Code interest (2 minutes)

› LF AI General Updates (2 min)

› Open Discussion (2 min)

27JAN2022

TAC Voting Members - Please note

Please ensure that you do the following to facilitate smooth

procedural quorum and voting processes:

● Change your Zoom display name to include your First/Last

Name, Company/Project Represented

○ example: Nancy Rausch, SAS

● State your First/Last Name and Company/Project when

submitting a motion

○ example: First motion, Nancy Rausch/SAS

27JAN2022

Challenge with TAC Quorum

› 18 voting members requiring 10 voting members to achieve

quorum

› Proposing updating charter to reflect the following changes:

› A TAC voting member who misses 2 TAC meetings in a row will

lose their voting seat until they attend twice in a row.

› Process: Socialize with GB and TAC. Propose amendment to the

Charter and have the GB vote on it.

27JAN2022

TAC
Voting
Members

* = still need

backup

specified on

wiki

https://wiki.lfaidata.foundation/pages/viewpage.action?pageId=7733341

Security Badge Requirement

› All project maintainers are reminded that the OpenSSF Best Practices

Badge (formerly known as CII Best Practices badge) is a requirement for

all hosted projects.

› Currently only a handful of projects show that they've earned the

badge: https://landscape.lfai.foundation/card-

mode?bestpractices=yes&project=hosted

› Please as project leader take the initiative to enroll the project in the

program and get it badged and show your badge on your GH org

Please direct questions to Ibrahim Haddad <ibrahim@linuxfoundation.org>

27JAN2022

https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fbestpractices.coreinfrastructure.org%2Fen&data=04%7C01%7CNancy.Rausch%40sas.com%7C122b7cf5f8524ae5c84808d9dc458b0d%7Cb1c14d5c362545b3a4309552373a0c2f%7C0%7C0%7C637783013520162159%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=nM3AlzBE6FXMIJp5RTn8TRtcLbCRm8b3Vc6ZzExZpf8%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Flandscape.lfai.foundation%2Fcard-mode%3Fbestpractices%3Dyes%26project%3Dhosted&data=04%7C01%7CNancy.Rausch%40sas.com%7C122b7cf5f8524ae5c84808d9dc458b0d%7Cb1c14d5c362545b3a4309552373a0c2f%7C0%7C0%7C637783013520162159%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=qE6lwxS5DdOCi8kCsladyWNAJ%2B32H2lSFu%2FIIHc11AI%3D&reserved=0

Artigraph

Declarative Data Production

Artifact + Graph = Artigraph

Artigraph is a tool to improve the authorship, management, and
quality of data. It emphasizes that the core deliverable of a data
pipeline or workflow is the data, not the tasks.

Language: Python
License: Apache 2.0
Project Lead: Jacob Hayes
Replica Contributors: Brett Naul, Joyce Xu, Kael Greco,

Marco Palmeri, Robert Regue, Steven Soojin Kim
Source: https://github.com/artigraph/artigraph

https://github.com/artigraph/artigraph

Overview and Vision

Motivations

Artigraph is motivated by experience:
› collaborating with data engineers to ingest, maintain, and QA data

› enabling data operators to run pipelines with self-service tooling

› helping application developers design environments, publishing, and

versioning

› interfacing with customer teams to release data timely and safely

› supporting data scientists and modellers in shipping production-ready

code

Challenges

› Ad hoc experimentation
› Lose track of inputs/parameters
› Parallel experiments may conflict

› Failed jobs requiring human intervention
› Identify the kind of failure
› Cleanup partial data
› Try to restart from a good spot

› I/O is tricky
› Changing format/storage needs
› Ingestion quirks (buffered, flakey, rate-limited, etc)
› Types may not be one:one

Challenges

› Shared / mutable data ("the prod table")
› Accidents or failures expose bad data
› Hard or manual rollback (if backed up!)
› Unknown history

› Missing, late, or partial vendor deliveries
› Manual recovery
› Subtle downstream impacts

› "What data is available?" / "Is this good to use?"
› Engineers in the loop
› Hard to discover latest data or version
› Lack of trust in data quality

Use Cases

Automatic data lineage,

provenance, and quality tracking

› Arbitrary partitioning and mapping
› Automatic backfills and rebuilds
› Decoupled I/O
› Definition-time validation
› Intelligent target-based checkpointing

with (relatively) friendly paths/names
› Native dependency tracking
› Pluggable types, formats, storage,

views, etc
› Schema checking and quality gating
› Self-healing failure recovery
› Tag / publish a cohesive collection of

data, atomically

Features

Build resilient data graphs easily

› Arbitrary partitioning and mapping
› Automatic backfills and rebuilds
› Decoupled I/O
› Definition-time validation
› Intelligent target-based checkpointing

with (relatively) friendly paths/names
› Native dependency tracking
› Pluggable types, formats, storage,

views, etc
› Schema checking and quality gating
› Self-healing failure recovery
› Tag / publish a cohesive collection of

data, atomically

Use Cases Features

Work and experiment

independently, in parallel

› Arbitrary partitioning and mapping
› Automatic backfills and rebuilds
› Decoupled I/O
› Definition-time validation
› Intelligent target-based checkpointing

with (relatively) friendly paths/names
› Native dependency tracking
› Pluggable types, formats, storage,

views, etc
› Schema checking and quality gating
› Self-healing failure recovery
› Tag / publish a cohesive collection of

data, atomically

Use Cases Features

Zero-downtime data-application

updates with easy, quick, and

safe rollback

› Arbitrary partitioning and mapping
› Automatic backfills and rebuilds
› Decoupled I/O
› Definition-time validation
› Intelligent target-based checkpointing

with (relatively) friendly paths/names
› Native dependency tracking
› Pluggable types, formats, storage,

views, etc
› Schema checking and quality gating
› Self-healing failure recovery
› Tag / publish a cohesive collection of

data, atomically

Use Cases Features

Target Roles - Data Engineers

Data Engineers will likely be the primary users, initiating experimentation
and driving adoption within a project or organization.

The declarative structure (eg: I/O, partitioning, schema, validation) will
support fast iteration and reduce the marginal development cost.
Checkpointing and partition based parallelization will speed execution and
simplify failure recovery.

Over time, clear and discoverable schemas and dependencies will ease
refactoring and impact analysis. Additionally, Artifact- (schema) and Graph-
(inputs, intermediates, and outputs) based interfaces and publishing support
collaboration and evolution.

Target Roles - Data Scientists and ML Engineers

Data Science or ML Eng may discover the project when "productionizing"

analysis or models, prompting experimentation.

Definition-time validation, managed I/O, and automatic rebuilds will hasten

development. Schema definitions and partition visibility will promote

discovery and reuse.

Schema standardization and the ability to track lineage will support

reproducible analysis and running many experiments in parallel without

losing track of inputs/parameters. Associated Statistics enable tracking and

comparing quality over time or across experiments.

Target Roles - Data Operations

Data Operations will benefit from Artigraph's data-level management and

visibility.

Self-service visibility into data availability and health will reduce

communication friction and delays. Native data management tooling will

simplify failure recovery.

Lineage and quality metadata will allow comparisons over time and support

root cause analysis of quality issues (which can often present downstream).

Additionally, operators can identify at-risk pipelines or products downstream

from flakey vendors/providers, supporting proactive redundancy planning.

Target Roles - Business

The larger business, while not often direct users, will benefit from improved
data quality and developer efficiency and efficacy.

With improved development and quality controls, product timelines should
firm and shorten. Additionally, with increased and incremental quality
control, quality and importantly trust in data deliverables should increase.
With atomic data publishing and native versioning, product updates become
a much lighter, safer process.

As tooling improves and barriers lower, certain business roles can use self-
service dashboards over data availability, lineage, and quality to support
customers and other internal functions.

Work with first class Artifacts, not return values
› Access data interactively, outside a workflow, by accessing the Graph
› Manage the entire data lifecycle: sourcing, garbage collection, versioning, publishing, etc
› Schema and quality checks are associated with Artifacts, not tasks
› Set Artifact level metadata, such as "vendor", "data owner", "vintage", etc
› Underlying data is discoverable with meaningful and contextual paths/names

Simplify logic with declarative metadata
› Automatically validate schema, compute statistics, and apply quality gating
› Decouple data format+storage from preferred in-memory data structure with automatic I/O
› Leverage metadata, such as custom annotations, derived statistics, and partition keys, to define

dependencies
› Use standard python type hints to define parameters and returns, supporting static analysis

tools such as `mypy`

Why Artigraph?

Project Structure

Overview

Artigraph is written in Python as a collection of small, well
defined interfaces with pluggable implementations. The project
is distributed as a namespace package, allowing for
progressive addition and enhancement. Most data structures
are immutable with state encapsulated in Backends. A majority
of the interfaces are defined, but need implementations
contributed.

There are 3 primary components: Artifacts, Producers, and
Graphs.

https://github.com/artigraph/artigraph/blob/golden/src/arti/artifacts/__init__.py
https://github.com/artigraph/artigraph/blob/golden/src/arti/producers/__init__.py
https://github.com/artigraph/artigraph/blob/golden/src/arti/graphs/__init__.py

Artifacts are first class representations of data comprised of:
› type: structure of the data - data type, fields, nullability, partitioning, etc.

› format: serialized format - CSV, Parquet, database native, etc.

› storage: persistent storage system - blob storage, database native, etc.

Example:

class TotalSpend(Artifact):

"""Aggregate spend over all time."""

type = Float64()

format = JSON()

storage = LocalFile()

Primary Components - Artifact

https://github.com/artigraph/artigraph/blob/golden/src/arti/types/__init__.py
https://github.com/artigraph/artigraph/blob/golden/src/arti/formats/__init__.py
https://github.com/artigraph/artigraph/blob/golden/src/arti/storage/__init__.py
https://github.com/artigraph/artigraph/blob/a3eef0c90be4d98e1b8fded8a74748e419de2bc5/docs/examples/spend/demo.py#L29-L34

Artigraph has a robust hub-and-spoke type system supporting
format and framework type adaptation.

Artifacts serve as a data contract, easing collaboration, mocking,
testing, and validation. The configurable format and storage can be
swapped to tailor for tests, local dev, or remote builds.

Friendly, contextual paths/names are generated for all Artifacts,
easing interactivity and debuggability. Arbitrary partitioning and data
discovery supports flexible granularity and self-healing.

Primary Components - Artifact

Primary Components - Producer

Producers are tasks taking and producing Artifact(s) comprised of:
› version: versioning strategy - GitCommit, SemVer, Source, etc

› map: logic defining partition dependencies - 1:1, rolling window, geo buffer, etc

› build: logic to generate an output partition - python, pandas, SQL query, etc

Example:

@producer(version=SemVer(major=1, minor=0, patch=0))

def aggregate_transactions(

transactions: Annotated[list[dict], Transactions]

) -> Annotated[float, TotalSpend]:

return sum(txn["amount"] for txn in transactions)

https://github.com/artigraph/artigraph/blob/golden/src/arti/versions/__init__.py
https://github.com/artigraph/artigraph/blob/a3eef0c90be4d98e1b8fded8a74748e419de2bc5/docs/examples/spend/demo.py#L37-L41

Primary Components - Producer

Producers operate on in-memory Views (native, pandas, database,
etc) defined in standard type hints, which are validated against the
Artifact Type at Producer definition. Dependencies are defined by
Artifact kind, not name, easing linting, refactoring, and reuse.

Each output partition, as defined by map, gets a unique "input
fingerprint" based on the producer name, version, and fingerprint of
input partition content.

Producers should aim to be deterministic and side-effect free.

https://github.com/artigraph/artigraph/blob/golden/src/arti/views/__init__.py

Graphs define a DAG comprised of:
› artifacts: arbitrarily nested named collection of raw and produced artifacts
› backend: state storage for all metadata - memory, file, database, API, etc
› executor: adaptor to a workflow execution tool - Airflow, Argo, Prefect,

etc

Example:

with Graph(name="test") as g:
g.artifacts.transactions = Transactions(

annotations=[Vendor(name="Acme")],
format=JSON(),
storage=LocalFile(path=str(DIR / "transactions" / "{date.iso}.json")),

)
g.artifacts.spend = aggregate_transactions(transactions=g.artifacts.transactions)

Primary Components - Graph

https://github.com/artigraph/artigraph/blob/golden/src/arti/backends/__init__.py
https://github.com/artigraph/artigraph/blob/golden/src/arti/executors/__init__.py
https://github.com/artigraph/artigraph/blob/a3eef0c90be4d98e1b8fded8a74748e419de2bc5/docs/examples/spend/demo.py#L44-L50

A Graph is named and may materialize to one of many snapshots
defined by the Graph structure, Producer name and version, and
raw Artifact contents. Graph Snapshots can be tagged/published for
future lookup.

Metadata, such as partitions, lineage, and tags, is stored in the
Backend.

Graphs provide a convenient handle to interact with Artifact data for
cross-graph references and interactive or application use.

Primary Components - Graph

class Transactions(Artifact):

"""Transactions partitioned by day."""

type = Collection(

element=Struct(fields={"date": Date(), "amount": Float64()}),

partition_by=("date",),

)

class TotalSpend(Artifact):

"""Aggregate spend over all time."""

type = Float64()

format = JSON()

storage = LocalFile()

@producer(version=SemVer(major=1, minor=0, patch=0))

def aggregate_transactions(

transactions: Annotated[list[dict], Transactions]

) -> Annotated[float, TotalSpend]:

return sum(txn["amount"] for txn in transactions)

with Graph(name="test-graph") as g:

g.artifacts.vendor.transactions = Transactions(

annotations=[Vendor(name="Acme")],

format=JSON(),

storage=LocalFile(path=str(DIR / "transactions" / "{date.iso}.json")),

)

g.artifacts.spend = aggregate_transactions(transactions=g.artifacts.vendor.transactions)

Example

https://github.com/artigraph/artigraph/blob/a3eef0c90be4d98e1b8fded8a74748e419de2bc5/docs/examples/spend/demo.py

g.build()

Planned Features

Long Term
› Cost Attribution

› Data Access / IAM

› Garbage Collection

› Row- and Field- Slicing

Very Long Term
› DaaS Platform / Data Hub

Short Term
› Dashboard

› Statistics

› Thresholds

Medium Term
› Hooks

› Metrics

› Resources

Incubation

Data Engineers are expected to be the primary contributors,

adding support for their preferred tools. As the project grows,

companies and OSS communities developing complementary

tools may directly contribute support or maintenance.

The main contributions will be:

Target Contributors

› I/O
› Resources
› Backends
› Executors

› Formats

› Storage

› Statistics

› Views

Why Incubate?

› Adopt governance best practices developed by LF AI & Data and

projects

› Collaborate with other LF AI & Data projects

› Increase project visibility to gather contributors and users

› Neutral holding ground

Possible Collaborations

› AI Explainability 360 / AI Fairness 360: explain and assess bias in model

outputs

› Amundsen: data discovery and visualization

› Flyte / Kedro: pipeline execution/integration

› ONNX: serialize model outputs

› OpenLineage / Egeria / Marquez: metadata backend

› RosaeNLG: user-friendly content in dashboards

Incubation

We're formally requesting the incubation of Artigrah in LF AI &

Data at the Sandbox level. Looking forward to a positive vote

and great collaborations to follow.

TAC Vote on Artigraph Incubation at the Sandbox Level
Project Proposal

Proposed Resolution:

The TAC approves the Artigraph proposal as an incubation at the sandbox

level project of the LF AI & Data Foundation

27JAN2022

Minutes approval

27JAN2022

Approval of January 13, 2022 Minutes

Draft minutes from the January 13 TAC call were previously distributed to the

TAC members via the mailing list

Proposed Resolution:

› That the minutes of the January 13th meeting of the Technical Advisory

Council of the LF AI & Data Foundation are hereby approved.

27JAN2022

Reminder: Google Summer of Code - Interest in
LFAI Mentorship?

Please reach out to Jun Gu jun.gu@zilliz.com
if interested

27JAN2022

mailto:jun.gu@zilliz.com

Apply Google Summer of Code 2022

A global, online program focused on bringing
new contributors into open source software
development.

More details:
https://summerofcode.withgoogle.com/

Expanding Google Summer of Code in 2022

The organizations apply in Feb. 2022, what we

need to do?

● Register the organization with GSoC

○ 2-5 org administrators needed

● List the program ideas/projects, e.g.,

○ The idea/project in detail

○ The mentors for the idea

○ Skills needed for the idea

○ The expected outcome of the idea

https://summerofcode.withgoogle.com/
https://opensource.googleblog.com/2021/11/expanding-google-summer-of-code-in-2022.html

Reference from GSoC 2021: Organization Application

Upcoming TAC Meetings

27JAN2022

Upcoming TAC Meetings

› February 10, 2022: Kompute moving from Sandbox to Incubation

› February 24, 2022: Project review TBD

Please send agenda topic requests to tac-general@lists.lfaidata.foundation

27JAN2022

Open Discussion

27JAN2022

TAC Meeting Details

› To subscribe to the TAC Group Calendar, visit the wiki:

https://wiki.lfaidata.foundation/x/cQB2

› Join from PC, Mac, Linux, iOS or Android: https://zoom.us/j/430697670

› Or iPhone one-tap:

› US: +16465588656,,430697670# or +16699006833,,430697670#

› Or Telephone:

› Dial(for higher quality, dial a number based on your current location):

› US: +1 646 558 8656 or +1 669 900 6833 or +1 855 880 1246 (Toll Free) or +1 877

369 0926 (Toll Free)

› Meeting ID: 430 697 670

› International numbers available: https://zoom.us/u/achYtcw7uN

27JAN2022

https://wiki.lfaidata.foundation/x/cQB2
https://wiki.lfai.foundation/x/XQB2
https://zoom.us/j/430697670
https://zoom.us/u/achYtcw7uN

Legal Notice

› The Linux Foundation, The Linux Foundation logos, and other marks that may be used herein are owned by The Linux Foundation or its
affiliated entities, and are subject to The Linux Foundation’s Trademark Usage Policy at https://www.linuxfoundation.org/trademark-usage, as
may be modified from time to time.

› Linux is a registered trademark of Linus Torvalds. Please see the Linux Mark Institute’s trademark usage page at
https://lmi.linuxfoundation.org for details regarding use of this trademark.

› Some marks that may be used herein are owned by projects operating as separately incorporated entities managed by The Linux
Foundation, and have their own trademarks, policies and usage guidelines.

› TWITTER, TWEET, RETWEET and the Twitter logo are trademarks of Twitter, Inc. or its affiliates.

› Facebook and the “f” logo are trademarks of Facebook or its affiliates.

› LinkedIn, the LinkedIn logo, the IN logo and InMail are registered trademarks or trademarks of LinkedIn Corporation and its affiliates in the
United States and/or other countries.

› YouTube and the YouTube icon are trademarks of YouTube or its affiliates.

› All other trademarks are the property of their respective owners. Use of such marks herein does not represent affiliation with or authorization,
sponsorship or approval by such owners unless otherwise expressly specified.

› The Linux Foundation is subject to other policies, including without limitation its Privacy Policy at https://www.linuxfoundation.org/privacy and
its Antitrust Policy at https://www.linuxfoundation.org/antitrust-policy. each as may be modified from time to time. More information about The
Linux Foundation’s policies is available at https://www.linuxfoundation.org.

› Please email legal@linuxfoundation.org with any questions about The Linux Foundation’s policies or the notices set forth on this slide.

27JAN2022

https://www.linuxfoundation.org/trademark-usage
https://lmi.linuxfoundation.org/
https://www.linuxfoundation.org/privacy
https://www.linuxfoundation.org/antitrust-policy
https://www.linuxfoundation.org/
mailto:legal@linuxfoundation.org

